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Abstract 11 

Detrended Cross-Correlation Analysis (DCCA) revealed an emergent transition in non-12 

periodic (deseasonalized) atmospheric variability at time-scales ~1-year. At multi-year 13 

time-scales (i) SST,Tland~0.6 (i.e. the correlation been global-averaged sea surface 14 

temperature, SST, and 2-meter air temperature averaged over global-land, Tland); (ii) 15 

Clausius-Clapeyron relationship becomes the dominant control of global-averaged 16 

precipitable water vapor (W), with W,T2m≈W,SST~0.9; (iii) atmospheric radiative fluxes, 17 

specifically the surface downwelling longwave radiative flux (DLR), become a key 18 

constraint for global-mean precipitation (P) variability (P,Ratm≈P,DLR~-0.8); (iv) cloud 19 

effects are negligible in (iii), and clear-sky DLR becomes a dominant P constraint; and 20 

(v) P,T2m and P,SST displayed significant multi-year correlations, although with large 21 

spread amongst different datasets (~0.4 to ~0.7). Result (v) provides a new perspective 22 

into the well-known uncertainties climate models associated with the dynamical 23 

component of precipitation. At sub-yearly time-scales all correlations underlying these 24 

five results decrease abruptly towards negligible values.  25 

The relevance and validity of this multi-scale structure is demonstrated by three 26 

reconstructed P time-series at 2-year resolution, two relying on clear-sky DLR constraints 27 

and one based on P-SST correlation. These simple models, particularly one based on 28 

clear-sky DLR, were able to reproduce observed P anomaly time-series with similar 29 

accuracy to a (uncoupled) atmospheric model (ERA-20CM) and two climate reanalysis 30 

(ERA-20C and 20CR). The idealized models aren’t applicable at sub-yearly time-scales, 31 

where the underlying correlations become negligible. However, monthly P probability 32 

density functions (PDFs) were derived by stochastic downscaling of reconstructed P, 33 
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leveraging on scale-invariant properties, outperforming the statistics simulated by ERA-34 

20C, 20CR and ERA-20CM. 35 

 36 

 37 

1. Introduction 38 

The precipitation response to changes in increased concentrations of greenhouse gases is 39 

a central topic for the climate science community. Although its regional variability is 40 

essential to determine the societal impacts, global-averaged precipitation (P) is an 41 

important first-order climate indicator, and a measure of the global water cycle, that must 42 

be accurately simulated if robust climate projections are to be obtained across a wide 43 

range of spatial and temporal scales. However, even the long-term P response is still 44 

poorly understood, constrained and simulated (Collins et al., 2013; Allan et al., 2014; 45 

Hegerl et al., 2015), largely due to the limited knowledge on the complex interactions 46 

between the key components of the atmospheric branch of the water cycle and its forcing 47 

mechanisms. This problem is tackled here by employing a multi-scale analysis framework 48 

to study the variability of P, and its relation to two key governing mechanisms: the 49 

Clausius-Clapeyron (C-C) relationship and the constraints imposed by the atmospheric 50 

energy balance. 51 

The C-C relationship is a well-known mechanism controlling the variability of the global 52 

water cycle. Assuming constant relative humidity, it implies that fractional changes in 53 

global-averaged precipitable water vapor (∆𝑊/𝑊) are linearly related to fluctuations of 54 

global-averaged near-surface (e.g. 2-meter) air temperature (∆𝑇2𝑚) (e.g. Held & Soden, 55 

2006; Schneider et al., 2010):  56 

∆𝑊

𝑊
≈ 𝛼𝑊,𝑇2𝑚

∆𝑇2𝑚,         (1) 57 

where 𝛼𝑊,𝑇2𝑚
≈ 0.07 K-1 at temperatures typical of the lower troposphere. Numerous 58 

studies have provided a robust confirmation for C-C at multi-decadal to centennial time-59 

scales, while also reporting an analogous linear response of ∆𝑃 to ∆𝑇 (see e.g. Schneider 60 

et al., 2010; Trenberth, 2011; O’Gorman et al., 2012; and Allan et al., 2014 for reviews). 61 

In general, these previous investigations agree on the ~7%/K sensitivity coefficient for 62 

W. However, there is large spread on the P sensitivity coefficient estimates, typically in 63 

the 1%/K to 3%/K range.  64 

A widely recognized explanation for the sub-C-C sensitivity of P to temperature 65 

fluctuations at long temporal scales comes from the atmospheric energy balance (Allen 66 
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& Ingram, 2002; Stephens & Ellis, 2008; Stephens & Hu, 2010). Specifically, averaging 67 

over the global atmosphere, the latent heat flux associated with precipitation formation 68 

(𝐿𝑉P, 𝐿𝑉 being the latent heat of vaporization) must be in balance with the net atmospheric 69 

radiative flux (𝑅𝑎𝑡𝑚) and the surface sensible flux (𝐹𝑆𝐻): 70 

𝐿𝑉𝑃+𝑅𝑎𝑡𝑚 + 𝐹𝑆𝐻 ≈ 0,        (2) 71 

Equation (2) represents a general state of radiative convective equilibrium (Pauluis & 72 

Held, 2002), with energy fluxes defined positive for atmospheric gain, and negative 73 

otherwise. 74 

If the C-C relationship was the dominant mechanism controlling the response of 75 

atmospheric moisture content and the global water cycle to temperature fluctuations, then 76 

W and P could be expected to be strongly correlated to surface temperature. Previously 77 

Gu and Adler (2011, 2012) found strong correlations between the inter-annual variability 78 

of W and global-averaged surface temperature, in tight agreement with the C-C 79 

relationship. However, they found weaker (but significant) correlations between the inter-80 

annual variability of P and global-averaged surface temperature, suggesting that C-C 81 

might not be directly extendable to global precipitation. But these results focusing on a 82 

single temporal scale might not represent the entire picture.  In fact, it is now a well-83 

established fact that precipitation and other relevant atmospheric variables (including 84 

temperature, atmospheric moisture, wind, etc.) display a complex statistical structure, 85 

with significant variability over a wide range of temporal scales, and with the possibility 86 

of different mechanisms governing variability at different time-scales (see e.g. Lovejoy 87 

& Schertzer, 2013 for a comprehensive review). Furthermore, it has been shown that this 88 

complex multiscale structure plays a role (at least) as important and the large amplitude 89 

periodic components, namely diurnal and seasonal cycles (Lovejoy, 2015; Nogueira, 90 

2017a). However, our understanding of the underlying governing mechanisms at different 91 

time-scales remains largely elusive, representing a central problem for future 92 

improvements to climate simulation and projection. 93 

Recently, Nogueira (2018) analyzed satellite-based observational datasets, a long Global 94 

Climate Model simulation and reanalysis products and found a tight correlation (~0.8) 95 

between anomaly (deseasonalized) time-series of W and global-averaged surface 96 

temperature, which emerged at time-scales larger than ~1-2 years. In contrast, at smaller 97 

time-scales the correlation decreased rapidly towards negligible values (<0.3). In other 98 

words, the C-C relationship is the dominant mechanism of deseasonalized W anomalies 99 

at multi-year time-scales, but not at sub-yearly time-scales. Nogueira (2018) also found 100 
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that the magnitude of the correlations between anomaly time-series for P and global-101 

averaged surface temperature was negligible at sub-yearly time-scales, while at multi-102 

year time-scales the results showed large spread amongst different data-sets, ranging 103 

between negligible (<0.3) and strong (~0.8) correlation values. Building on this previous 104 

study, here the multi-scale analysis of the mechanisms governing P variability is 105 

extended, including the energetic constraints on P represented in Equation (2). 106 

Additionally, a simple stochastic model is proposed to reconstruct P time-series based on 107 

the strong correlations found at multi-year time-scales, while monthly statistics are 108 

reproduced by employing a stochastic downscaling algorithm based on scale-invariant 109 

symmetries of P. The manuscript is organized as follows: section 2 describes the 110 

considered datasets and the multi-scale analysis framework; the results of multi-scale 111 

correlation analysis on P variability are presented and discussed in section 3; in section 4 112 

a simple idealized model is proposed for reconstruction of P variability; and finally the 113 

main conclusions are summarized and discussed in section 5. 114 

 115 

2. Data and Methodology 116 

2.1. Data sets 117 

Observations of P were obtained from the Global Precipitation Climatology Project 118 

(GPCP) version 2.3 monthly precipitation dataset (Adler et al., 2003), which covers the 119 

full globe at 2.5º resolution from 1979 to present. Gridded datasets of monthly average 120 

surface temperatures were obtained from the Goddard Institute for Space Studies 121 

(GISSTEMP) analysis (Hansen et al., 2010), which covers the globe at 2º resolution from 122 

1880 to present, with the values provided as anomalies relative to the 1951-1980 reference 123 

period. GISSTEMP blends near-surface air temperature measurements from 124 

meteorological stations (including Antarctic stations) with a reconstructed SST dataset 125 

over oceans. Observations of atmospheric radiative fluxes were obtained from the 126 

National Aeronautics and Space Administration (NASA) Clouds and the Earth’s Radiant 127 

Energy System, Energy Balanced and Filled (CERES-EBAF) Edition 4.0 (Loeb et al., 128 

2009), a monthly dataset covering the full globe at 1º resolution from March/2000 to 129 

June/2017. 130 

Two state-of-the-art reanalyses of the twentieth-century were considered in the present 131 

study. One was the National Oceanic and Atmospheric Administration Cooperative 132 

institute for Research in Environmental Sciences (NOAA-CIRES) twentieth-century 133 

reanalysis (20CR) version 2c (Compo et al., 2011), which covers the full globe at 2º 134 
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resolution, spanning from 1851 to 2014. Only surface pressure observations and reports 135 

are assimilated in this reanalysis. SST boundary conditions are obtained from 18 members 136 

of pentad Simple Ocean Data Assimilation with Sparse Input (SODAsi) version 2, with 137 

the high latitudes corrected to the Centennial in Situ Observation-Based Estimates of the 138 

Variability of SST and Marine Meteorological Variables, version 2 (COBE-SST2). Here, 139 

global-mean time-series of P, W, SST, T2m, DLR and OLR are obtained from 20CR at 140 

daily resolution for the 1900-2010 period. Ratm cannot be obtained the incoming solar 141 

radiation at TOA is not available for the 20CR dataset, due to an error with output 142 

processing.  143 

The other reanalysis considered in the present study was the European Centre for 144 

Medium-Range Weather Forecasts (ECMWF) twentieth-century reanalysis (ERA-20C, 145 

Poli et al., 2015), which covers the full globe at 1º resolution spanning from 1900-2010. 146 

It assimilates marine surface winds from the International Comprehensive Ocean-147 

Atmosphere Data Set version 2.5.1 (ICOADSv2.5.1) and surface and mean-sea-level 148 

pressure from the International Surface Pressure Databank version 3.2.6 (ISPDv3.2.6) 149 

and from ICOADSv2.5.1. SST boundary conditions are obtained from the Hadley Centre 150 

Sea Ice and Sea Surface Temperature data set version 2.1 (HadISST2.1). Global-mean 151 

time-series of P, W, SST, T2m, Ratm, DLR and OLR are obtained from ERA-20C at daily 152 

resolution for the 1900-2010 period.  153 

Finally, the uncoupled ECMWF twentieth-century ensemble of ten atmospheric model 154 

integrations (ERA-20CM, Hersbach et al., 2015) was considered, which uses the same 155 

model, grid, initial conditions, radiative and aerosol forcings as ERA-20C. However, no 156 

observations are assimilated, the simulation is integrated continuously over the full 1900-157 

2010 period, and SST is prescribed by an ensemble of realizations from HadISST2.1, 158 

including one control simulation and nine simulations with perturbed SST and sea-ice 159 

concentration. A 10-member ensemble of global-mean time-series of P, W, SST, T2m, 160 

Ratm, DLR and OLR were obtained from ERA-20CM at monthly resolution for the 1900-161 

2010 period. Considering ERA-20CM allowed to test the sensitivity of the multi-scale 162 

correlation structure derived from ERA-20C to data assimilation, but different 163 

atmospheric evolutions associated with perturbations to the forcing fields (particularly to 164 

SST). 165 

Notice that the clear-sky radiative fluxes considered here obtained from ECMWF datasets 166 

are computed for the same atmospheric conditions of temperature, humidity, ozone, trace 167 

gases and aerosol, but assuming that the clouds are not there. Clear-sky estimates from 168 
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ERA-20C and ERA-20CM cover the full globe area and not just the cloud free regions at 169 

each time instant. However, they are available for net radiative fluxes, but not for 170 

downwelling or upwelling radiation fluxes. 171 

2.2.Detrended Cross-Correlation Analysis (DCCA) 172 

DCCA allows to accurately quantify power-law correlations between two different time-173 

series over wide ranges of time-scales (Podobnik & Stanley, 2008). Consider two time-174 

series, 𝑦 and 𝑦′, with N data points each. Due to the strong yearly cycle present in the 175 

considered time-series, the periodic seasonal trend is first eliminated by subtracting the 176 

long-term average (over all the years in the record) of each calendar day (or month, 177 

depending on temporal resolution): 178 

∆𝑦(𝑖) = 𝑦(𝑖) − 〈𝑦〉𝑑,         (3) 179 

Then two integrated signals, 𝑅 and 𝑅′, are constructed from the deseasonalized anomaly 180 

time-series, ∆𝑦 and ∆𝑦′: 181 

𝑅𝑘 = ∑ [∆𝑦(𝑖) − 〈𝑦𝑑𝑠〉]𝑘
𝑖=1 ,         (4) 182 

Where k=1,…,N and 〈 〉 indicates temporal averaging. The integrated signals are 183 

divided into 𝑁 − 𝑛 overlapping segments, each containing 𝑛 + 1 values. For each 184 

segment from each integrated signal, the “local trend” is estimated using a first-order 185 

polynomial. The detrended integrated signal is then defined as the difference between the 186 

original integrated signal and the local trend (𝑅𝑣 − 𝑅𝑣̃), where 𝑅𝑣̃ is the fitting first-order 187 

polynomial to the 𝑣th segment 𝑅𝑣. Next, the covariance of the residuals in each segment 188 

is calculated as: 189 

𝑓𝑅,𝑅′
2(𝑛, 𝑖) =

1

𝑛+1
∑ [(𝑅𝑣 − 𝑅𝑣̃)(𝑅𝑣

′ − 𝑅𝑣
′̃)]𝑖+𝑛

𝑘=𝑖 ,     (5) 190 

The detrended covariance is estimated by summing over all overlapping N-n segments: 191 

𝐹𝑅,𝑅′
2 (𝑛) =

1

𝑁−𝑛
∑ 𝑓𝑅,𝑅′

2 (𝑛, 𝑖)𝑁−𝑛
𝑖=1 ,       (6) 192 

Finally, the DCCA cross-correlation coefficient at time-scale 𝑛, 𝜌𝑦,𝑦′(𝑛), is defined as 193 

the ratio between the detrended covariance function and the product of the square-rooted 194 

detrended variance function for each time-series: 195 

𝜌𝑦,𝑦′(𝑛) =
𝐹

𝑅,𝑅′
2 (𝑛)

√𝐹𝑅,𝑅
2 (𝑛)×√𝐹

𝑅′,𝑅′
2 (𝑛)

,       (7) 196 

The values of 𝜌𝑦,𝑦′(𝑛) range between -1 and 1 (for perfect negatively and positively 197 

correlated signals, respectively). It has been previously shown that critical points for the 198 

95% significance level of |𝜌𝐷𝐶𝐶𝐴| can vary between values below 0.1 and up to about 0.4, 199 
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depending on the time series length, the considered time-scale, and the power law 200 

exponents of both time-series (Podobnik et al., 2011). Here it is assumed that |𝜌𝐷𝐶𝐶𝐴| 201 

values below 0.3 are nonsignificant, and that |𝜌𝐷𝐶𝐶𝐴| values in the 0.3 to 0.4 range should 202 

be interpreted with care. 203 

 204 

3. DCCA analysis of the mechanisms governing P variability across time-scales 205 

3.1. Multi-scale structure of the atmospheric water cycle response to surface 206 

temperature fluctuations 207 

DCCA reveals strong correlations (~0.9) between deseasonalized anomaly time-series for 208 

W and T2m or SST at multi-year time-scales (Fig. 1a). However, as the time-scale 209 

decreases there is a transition in the correlation structure, and negligible correlations 210 

(<0.3) emerge at sub-yearly time-scales. This result suggested that the C-C relationship 211 

in Equation (1) holds to a very good approximation at multi-year time-scales, but not at 212 

sub-yearly time-scales. Lovejoy et al. (2018) employed multi-scale analysis framework 213 

based on Haar wavelets to GISSTEMP and found a similar transition in the multi-scale 214 

correlation structure of SST against global-averaged surface temperature, between low-215 

correlations at time-scales below a few months and strong correlations (~0.8) at multi-216 

year time-scales. These strong correlations weren’t surprising, since SST was a major 217 

component in their definition of global-averaged surface temperature (also considering 218 

SST over the ocean pixels and 2-meter air temperature over land pixels). But their results 219 

also showed a transition in the correlation coefficients between SST and near-surface air 220 

temperature over global-land (Tland), with maximum correlation values ~0.6 at multi-year 221 

time-scales. The transition in 𝜌𝑆𝑆𝑇,𝑇𝑙𝑎𝑛𝑑 was confirmed here by employing DCCA to 222 

ERA-20C, ERA-20CM, 20CR and GISSTEMP (Fig. 1b). Thus, the present results 223 

support Lovejoy et al. (2018) argument that these abrupt correlation changes correspond 224 

to a fundamental behavioral transition, where the atmosphere and the oceans start to act 225 

as a single coupled system. Furthermore, the results presented here suggest that W 226 

anomalies at multi-year resolution can be derived, to a very good approximation, from 227 

SST alone. 228 

Nogueira (2018) also reported a transition in the multi-scale correlation structure between 229 

deseasonalized anomaly time-series of P and global-averaged surface temperature 230 

(considering SST over the oceans and 𝑇2𝑚 over land), with negligible values at sub-yearly 231 

time-scales, but with large spread in the magnitude of the multi-year correlations, ranging 232 
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between values ~0.3 to ~0.8. Here, a similar result was found for 𝜌𝑃,𝑇2𝑚
 and 𝜌𝑃,𝑆𝑆𝑇 (Fig. 233 

1c), with large spread in correlation magnitude at multi-year time-scales (~0.7 in ERA-234 

20C and ERA-20CM, ~0.6 in 20CR, and <0.4 in observations). This large spread and the 235 

relatively low correlations obtained from observational datasets confirmed the 236 

uncertainty on the extension of C-C relationship as the dominant control of P variability. 237 

Notice that the large spread in 𝜌𝑃,𝑇2𝑚 and 𝜌𝑃,𝑆𝑆𝑇 represents a different perspective, under 238 

a multi-scale analysis framework, on a previously established fact: there are large 239 

uncertainties in climate simulations associated with the role of the non-thermodynamical 240 

(circulation) component of precipitation response to climate change (see e.g. Shepherd, 241 

2014).  242 

3.2. Multi-scales structure of the energetic constraints to P variability 243 

A study of the circulation component of the P response to temperature fluctuations 244 

requires a detailed representation of several spatially heterogeneous variables and their 245 

nonlinear interactions. An alternative path towards understanding P variability was taken 246 

in the present investigation, focusing on the constraints imposed by the atmospheric 247 

energy balance represented in Equation (2). Fig. 2a (solid lines) shows that the estimated 248 

DCCA correlation coefficients between the deseasonalized anomaly time-series for P and 249 

Ratm were strongly (negatively) correlated at multi-year time-scales (𝜌𝑃,𝑅𝑎𝑡𝑚
~ − 0.8 in 250 

ERA-20C, ERA-20CM and observations), in agreement with the balance in Equation (2). 251 

The same wasn’t true at sub-yearly time-scales, where the correlation magnitude 252 

decreased rapidly, changed sign around monthly time-scales, and reached values ~0.4 at 253 

time-scales below about 10 days.  254 

Considering the effect of FSH in Equation (2) (i.e. 𝜌𝑃,𝑅𝑎𝑡𝑚+𝐹𝑆𝐻
) slightly increased the 255 

(positive) correlations at sub-monthly time-scales (Fig. 2a, dashed lines), although the 256 

absolute changes are essentially below 0.1 and 𝜌𝑃,𝑅𝑎𝑡𝑚+𝐹𝑆𝐻
 at sub-monthly time-scales 257 

(which is only available for the ERA-20C dataset). More importantly, the change between 258 

𝜌𝑃,𝑅𝑎𝑡𝑚
 and 𝜌𝑃,𝑅𝑎𝑡𝑚+𝐹𝑆𝐻

 at multi-year time-scales was negligible. Indeed, 259 

𝜌𝑃,𝑅𝐹𝑆𝐻
displayed values up to about 0.5 at sub-monthly time-scales, but essentially <0.4 260 

at multi-year time-scales (Fig. 2a, dot-dashed lines). Given the results in Fig. 1a, the 261 

following linear relation was hypothesized: 𝐿𝑉∆𝑃 ≈ 𝑐1 × (−∆𝑅𝑎𝑡𝑚) + 𝑐2, where 𝑐1 and 262 

𝑐2 are arbitrary constants, and ∆ represents fluctuations taken as deseasonalized 263 

anomalies at multi-year resolutions. At sub-yearly time-scales this simplification is not 264 
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adequate, since 𝜌𝑃,𝑅𝑎𝑡𝑚
 becomes negligible and, thus, the energy balance represented in 265 

Equation (2) doesn’t represent the dominant constraint on P variability, most likely due 266 

to non-negligible changes in atmospheric heat storage. 267 

The analysis was extended by decomposing 𝑅𝑎𝑡𝑚 into its net atmospheric longwave and 268 

shortwave radiative flux components, i.e. 𝑅𝑎𝑡𝑚 = 𝑅𝐿𝑊,𝑛𝑒𝑡 + 𝑅𝑆𝑊,𝑛𝑒𝑡. On the one hand, 269 

𝜌𝑃,𝑅𝑎𝑡𝑚
≈ 𝜌𝑃,𝑅𝐿𝑊,𝑛𝑒𝑡

 over the full range of time-scales considered (Fig. 2b).  On the other 270 

hand,  𝜌𝑃,𝑅𝑆𝑊,𝑛𝑒𝑡
 also displays significant values (~0.6) at multi-year time-scales, but the 271 

latter magnitude was nearly 0.2 lower than 𝜌𝑃,𝑅𝑎𝑡𝑚
 and 𝜌𝑃,𝑅𝐿𝑊,𝑛𝑒𝑡

 (Fig. 2b). Consequently, 272 

the above linear relationship for multi-scale P anomalies was further refined as 𝐿𝑉∆𝑃 ≈273 

𝑐1 × (−∆𝑅𝑎𝑡𝑚) +  𝑐2 ≈ 𝑐3 × (−∆𝑅𝐿𝑊,𝑛𝑒𝑡) + 𝑐4, where 𝑐3 and 𝑐4 are arbitrary constants. 274 

Subsequently, 𝑅𝐿𝑊,𝑛𝑒𝑡 was further decomposed into the top-of-atmosphere (TOA) and 275 

surface net longwave fluxes, i.e. 𝑅𝐿𝑊,𝑛𝑒𝑡 = 𝑅𝐿𝑊,𝑇𝑂𝐴 + 𝑅𝐿𝑊,𝑆𝐹𝐶. At multi-year time-276 

scales, 𝜌𝑃,𝑅𝑎𝑡𝑚
≈ 𝜌𝑃,𝑅𝐿𝑊,𝑆𝐹𝐶

 (Fig. 2c). 𝜌𝑃,𝑅𝐿𝑊,𝑇𝑂𝐴
 also displayed significant values at 277 

multi-year time-scales, up to ~-0.6 in ERA-20C and ERA-20CM datasets. Notice that 278 

20CR displayed values |𝜌𝑃,𝑅𝐿𝑊,𝑇𝑂𝐴
| < 0.4 at multi-year time-scales. But ECMWF 279 

datasets were in better agreement with observations, suggesting that significant (negative) 280 

correlations existed between P and 𝑅𝐿𝑊,𝑇𝑂𝐴 anomalies at multi-year time-scales. 281 

Nonetheless, even for ECMWF and observational products, the magnitude of 𝜌𝑃,𝑅𝐿𝑊,𝑇𝑂𝐴
 282 

at multi-year time-scales was nearly 0.2 lower than for 𝜌𝑃,𝑅𝐿𝑊,𝑆𝐹𝐶
. Consequently, a further 283 

approximation was considered on the linear model for P fluctuations at multi-year time-284 

scales: 𝐿𝑉∆𝑃 ≈ 𝑐1 × (−∆𝑅𝑎𝑡𝑚) +  𝑐2 ≈ 𝑐3 × (−∆𝑅𝐿𝑊,𝑛𝑒𝑡) +  𝑐4 ≈ 𝑐5 ×285 

(−∆𝑅𝐿𝑊,𝑆𝐹𝐶) +  𝑐6.  286 

Finally, 𝑅𝐿𝑊,𝑆𝐹𝐶 can be further decomposed into its upwelling (𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃)  and 287 

downwelling (𝑅𝐿𝑊,𝑆𝐹𝐶,𝐷𝑂𝑊𝑁, henceforth denoted downwelling longwave radiation, DLR) 288 

components. Fig. 2d shows that, at multi-year time-scales, the differences between 289 

𝜌𝑃,𝑅𝐷𝐿𝑅
 and 𝜌𝑃,𝑅𝑎𝑡𝑚

 were within 0.1 in observations, ERA-20C and ERA-20CM (Ratm is 290 

unavailable for 20CR). Thus, at multi-year time-scales, the fluctuations in downwelling 291 

surface longwave radiative fluxes are, to a good approximation, linearly related to P 292 

fluctuations: 𝐿𝑉∆𝑃 ≈ 𝑐7 × (−∆𝐷𝐿𝑅) +  𝑐8. Notice that the differences between 293 

𝜌𝑃,𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃
 and 𝜌𝑃,𝑅𝑎𝑡𝑚

 are identically low in observations, but these differences are 294 

somewhat higher (~0.2) in ERA-20CM and ERA-20C. Thus, a similar linear relationship 295 
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between ∆𝑃 and ∆𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃 might also hold to a good approximation, although the 296 

correlations are less robust than for ∆𝑃 against ∆𝐷𝐿𝑅. 297 

The correlation between global-mean clear-sky net radiative atmospheric heating and P, 298 

i.e. 𝜌𝑃,𝑅𝑎𝑡𝑚,𝑐𝑠
, was nearly identical to 𝜌𝑃,𝑅𝑎𝑡𝑚

 at multi-year time-scales (Fig. 3a). This 299 

suggested that the cloud effects on the multi-year linear dependence between P variability 300 

and net atmospheric radiative fluxes may be neglected. But the same isn’t true at time-301 

scales below a few months, where significant differences emerge between 𝜌𝑃,𝑅𝑎𝑡𝑚,𝑐𝑠
 and 302 

𝜌𝑃,𝑅𝑎𝑡𝑚
. This clear-sky approximation holds at multi-year time-scales for correlations of 303 

P against global-averaged net atmospheric longwave radiative fluxes and, also, and 304 

against the global-averaged net surface longwave fluxes (Fig. 3b). Based on these results, 305 

it was further hypothesized that cloud effects are also negligible for the correlation 306 

between P and DLR at multi-year temporal scales. This hypothesis could not be tested 307 

directly because clear-sky DLR time-series were not available for the ECMWF datasets. 308 

Nonetheless, the results in Section 4 based on an empirical algorithm for DLR estimation 309 

under a clear-sky approximation provided support for this hypothesis.  310 

In summary, DCCA suggested that P variability at multi-year time-scales is linearly 311 

related to the net atmospheric radiative fluxes. Furthermore, this linear relationship is 312 

dominated by its longwave component and, more specifically, by the surface longwave 313 

radiative fluxes, particularly DLR. DCCA also suggests that clouds play a negligible 314 

effect in these linear correlations at multi-years scales. The hypothesized tight correlation 315 

between P and clear-sky DLR fluxes at multi-year time-scales was particularly 316 

interesting, since clear-sky DLR may be estimated directly from atmospheric water vapor 317 

content and surface temperature (e.g. Stephens et al., 2012b). This fact will be further 318 

explored below, in Section 4.  319 

Finally, notice that the results in Fig. 2c showed that P variability was best correlated to 320 

𝑅𝐿𝑊,𝑇𝑂𝐴 variability at sub-monthly time-scales, reaching positive values ~0.5-0.6. This 321 

corresponds to a well-known relation between convective rainfall and the outgoing 322 

longwave radiation at TOA, often denoted OLR (e.g. Xie & Arkin, 1998). However, this 323 

result provided no further simplification in the sense that, unlike for clear-sky DLR at 324 

multi-year resolution, it is equally difficult to model and predict P and OLR (including 325 

cloud effects) at sub-monthly time-scales. 326 

At this point, it is important to notice that the existence of strong correlations does not 327 

necessarily imply causality between two variables. However, the atmospheric energy 328 
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balance in Equation (2) provides a physical basis for the obtained strong (negative) 329 

correlations values between P and atmospheric radiative fluxes. In fact, the importance 330 

of energetic constraints to global precipitation, the dominant role of surface longwave 331 

fluxes, namely DLR, and the negligible cloud effects in these relations has been pointed 332 

out by previous investigations (e.g., Stephens and Hu, 2010; Stephens et al., 2012a,b). 333 

The DCCA presented here provided further robustness to these results. More importantly, 334 

a clear transition emerged between robust correlations at multi-year time-scales and 335 

negligible correlations at sub-yearly time-scales, which was found for P against Ratm (or 336 

DLR), for W against T2m (and SST), for SST against Tland and, less robustly, for P against 337 

T2m (or SST). Given the interdependence between these variables, these transitions are 338 

likely to be interrelated, representing a more fundamental transition in the atmosphere. 339 

Notice that these results also contribute to sharpen the picture from previous studies 340 

reporting a ‘fast’ P response at sub-monthly time-scales, where P is suggested respond 341 

directly to the radiative effects of increasing CO2; and a ‘slow’ response where P increases 342 

due to increasing surface temperature (Allen & Ingram, 2002; Bala et al., 2010; Andrews 343 

et al., 2010; O’Gorman et al., 2012; Allan et al., 2014). 344 

 345 

4. Stochastic model for global-mean precipitation 346 

4.1. Reconstruction of P time-series at multi-year resolution 347 

Here a very simple model for P response to climate change is proposed aiming to 348 

demonstrate the robustness of the tight correlation between P and clear-sky DLR (DLRCS) 349 

at multi-year time-scales presented in Section 3. The rationale is that the correlation 350 

between P and DLRCS at multi-year time-scales is significantly more robust than between 351 

P and T2m (or SST). Additionally, DLRCS can be derived, to a good approximation, from 352 

the global averaged near-surface temperature alone (e.g. Stephens et al., 2012b). 353 

Furthermore, given the tight coupling between Tland and SST at multi-year time-scales 354 

(Fig. 1b), it is hypothesized that DLRCS variability could be obtained, to a good 355 

approximation directly from the SST forcing. This hypothesis is also supported by the 356 

nearly identical correlations between W and T2m or SST (Fig. 1a). 357 

Here two different algorithms to estimate DLRCS are tested: the Dilley-O’Brien model 358 

(Dilley & O’Brien, 1998), and the Prata model (Prata, 1996). In the Dilley-O’Brien 359 

model: 360 

𝐷𝐿𝑅2𝑦,𝐷𝑂 = 𝑎1 + 𝑎2 (
𝑆𝑆𝑇2𝑦

𝑆𝑆𝑇𝑐
)

6

+ 𝑎3 (
∆𝑊2𝑦+𝑊𝑐

𝑊𝑐
)

1/2

,     (8) 361 
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Where 𝑎1 = 59.38 Wm-2, 𝑎2 = 113.7 Wm-2 and 𝑎3 = 96.96 Wm-2 are the model parameters, 362 

and 𝑊𝑐 = 22.5 kg m-2 is the climatological value for W. The subscript ‘2y’ (e.g. 𝐷𝐿𝑅2𝑦) 363 

indicates a time-series at 2-year resolution. The fluctuations ∆ represent anomaly time-364 

series relative to a climatological time-series, for example ∆𝐷𝐿𝑅2𝑦,𝐷𝑂 = 𝐷𝐿𝑅2𝑦,𝐷𝑂 −365 

𝐷𝐿𝑅𝑐,𝐷𝑂. Notice that for multi-year resolution time-series, this yields the same result as 366 

first deseasonalizing the time-series (using Equation (3)) and then coarse-graining it to 2-367 

year resolution. 𝐷𝐿𝑅𝑐,𝐷𝑂 = 𝑎1 + 𝑎2 + 𝑎3 is obtained by replacing the climatological 368 

values of W and SST in Equation (8).  369 

The Prata model for ∆𝐷𝐿𝑅2𝑦,𝑃𝑟 is based on the Stefan-Boltzmann equation: 370 

𝐷𝐿𝑅2𝑦,𝑃𝑟 = 𝜀𝑐𝑙𝑟𝜎𝑆𝐵𝑆𝑆𝑇2𝑦
4
        (9) 371 

Where 𝜎𝑆𝐵 = 5.67 × 10−8 Wm-2K-4 is the Stefan-Boltzmann constant and: 372 

𝜀𝑐𝑙𝑟 = 1 − (1 + 𝑊2𝑦)exp (−(1.2 + 3𝑊2𝑦)
1/2

)     (10) 373 

The anomaly-time series is computed from ∆𝐷𝐿𝑅2𝑦,𝑃𝑟 = 𝐷𝐿𝑅2𝑦,𝑃𝑟 − 𝐷𝐿𝑅𝑐,𝑃𝑟, where 374 

𝐷𝐿𝑅𝑐,𝑃𝑟 is obtained by replacing the climatological values of W and SST in Equations 375 

(9) and (10). 376 

The high values of 𝜌𝑊,𝑆𝑆𝑇(≈ 𝜌𝑊,𝑇2𝑚
) at multi-year time-scales (Section 3.1) allowed to 377 

remove the W dependence in Equations (8) and (11), by replacing  𝑊2𝑦 ≈378 

𝛼𝑊,𝑆𝑆𝑇∆𝑆𝑆𝑇2𝑦𝑊𝑐 + 𝑊𝑐. The forcing ∆𝑆𝑆𝑇2𝑦 time-series were obtained by coarse-379 

graining the deseasonalized (using Equation (3)) global-averaged SST obtained from 380 

GISSTEMP dataset. The sensitivity coefficient, 𝛼𝑊,𝑆𝑆𝑇 ≈ 0.08 𝐾−1 was estimated by 381 

least-square regression of ∆𝑊2𝑦/𝑊𝑐 against ∆𝑆𝑆𝑇2𝑦, pooling together all datasets (ERA-382 

20C, ERA-20CM and 20CR). The 𝛼𝑊,𝑆𝑆𝑇 estimates are summarized in Table 1, including 383 

for each individual dataset, ranging between 0.07 and 0.10 K-1. Notice that the obtained 384 

values are close to the typical 0.07 K-1 value. 385 

The results from Section 3.2 suggested a linear relation between P and DLRCS variability 386 

at multi-year time-scales, which can be written as 𝑃2𝑦 ≈ 𝛼𝑃,𝐷𝐿𝑅(−∆𝐷𝐿𝑅𝐶𝑆,2𝑦)𝑃𝑐 + 𝑃𝑐. In 387 

this way, two reconstructed anomaly time-series for P were obtained, 𝑃2𝑦,𝐷𝑂 and 𝑃2𝑦,𝑃𝑟, 388 

respectively by replacing ∆𝐷𝐿𝑅𝐶𝑆,2𝑦 with ∆𝐷𝐿𝑅2𝑦,𝐷𝑂 and ∆𝐷𝐿𝑅2𝑦,𝑃𝑟. The coefficient 389 

𝑃𝑐 ≈ 2.7 mm/day was estimated from GPCP dataset. The sensitivity coefficient 𝛼𝑃,𝐷𝐿𝑅 ≈390 

0.004 (W/m2)-1 was estimated by least-square regression of ∆𝑃2𝑦/𝑃𝑐 against ∆𝐷𝐿𝑅2𝑦, 391 

pooling together all available datasets (ERA-20C, ERA-20CM, 20CR and GPCP against 392 

CERES-EBAF). Notice that, in estimating 𝛼𝑃,𝐷𝐿𝑅, clear-sky DLR time-series were used 393 
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where available (i.e. for ERA-20C and ERA-20CM) datasets, but they were replaced by 394 

(full-sky) DLR otherwise (i.e. for 20CR and CERES-EBAF). The 𝛼𝑃,𝐷𝐿𝑅  estimates are 395 

summarized in Table 2, including values obtained from each dataset (no estimate was 396 

made for GPCP against CERES-EBAF due to the limited duration of the latter), ranging 397 

between 0.003 (W/m2)-1 and 0.005 (W/m2)-1. 398 

Another simple linear model for reconstruction of multi-year P anomaly time-series was 399 

tested, based on the direct response (correlations) of P to SST fluctuations, i.e. 𝑃2𝑦,𝑆𝑆𝑇 ≈400 

𝛼𝑃,𝑆𝑆𝑇∆𝑆𝑆𝑇2𝑦𝑃𝑐 + 𝑃𝑐. Again, the ∆𝑆𝑆𝑇2𝑦 was obtained from GISSTEMP dataset. The 401 

sensitivity coefficient, 𝛼𝑃,𝑆𝑆𝑇 ≈ 0.02 𝐾−1 was estimated by least-square regression of 402 

∆𝑃2𝑦/𝑃𝑐 against ∆𝑆𝑆𝑇2𝑦, pooling together all datasets (ERA-20C, ERA-20CM, 20CR and 403 

GPCP against GISSTEMP). The 𝛼𝑃,𝑆𝑆𝑇 estimates are summarized in Table 3, including 404 

for each individual dataset, ranging between 0.02 and 0.04 K-1. Notice that the obtained 405 

values are close to the 0.01 to 0.03 K-1 range reported in the relevant literature (e.g. 406 

Schneider et al., 2010; Trenberth, 2011; O’Gorman et al., 2012; and Allan et al., 2014). 407 

When compared against ∆𝑃2𝑦 directly derived from GPCP for the 1979 to 2010 period, 408 

the errors in the proposed linear ∆𝑃2𝑦 reconstructions were generally close to those for 409 

atmospheric model-based products (Fig. 4). ∆𝑃2𝑦,𝑃𝑟 displays the highest mean bias, 410 

somewhat higher than for atmospheric model-based datasets, but also higher than the 411 

mean bias for ∆𝑃2𝑦,𝐷𝑂 and ∆𝑃2𝑦,𝑆𝑆𝑇 (Fig. 4a). Notice that all atmospheric model-based 412 

products considered here also display a positive bias. While this may be due a negative 413 

bias of GPCP (e.g. Gehne et al., 2015), this observational dataset represents the longest 414 

reliable dataset for global precipitation studies and thus was considered here as ‘the truth’. 415 

More importantly, the mean bias is easy to correct, simply by subtracting its value from 416 

the time-series. This correction was implemented here for all atmospheric model-based 417 

and linear-model based ∆𝑃2𝑦 time-series.  Figure 4c shows that the normalized standard 418 

deviation (𝜎𝑛 = 𝜎2𝑦,𝑚𝑜𝑑𝑒𝑙/𝜎2𝑦,𝑜𝑏𝑠) estimated from ∆𝑃2𝑦,𝐷𝑂 (~0.4) and, particularly, from 419 

∆𝑃2𝑦,𝑆𝑆𝑇 (~0.3) were lower than the values estimated from atmospheric model-based 420 

products (~0.5-0.9). In contrast, 𝜎𝑛 estimated from ∆𝑃2𝑦,𝑃𝑟 was nearly 0.8, which was 421 

higher than 20CR and most members in the ERA-20CM ensemble, only outperformed by 422 

ERA-20C dataset. The root-mean squared error after bias-correction (RMSEbc) estimated 423 

from ∆𝑃2𝑦,𝑃𝑟 and ∆𝑃2𝑦,𝐷𝑂 were well within the range of the values obtained from 424 

atmospheric model-based products (Fig. 4b), with the Prata model slightly 425 
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overperforming the Dilley-O’Brien model. RMSEbc estimated from ∆𝑃2𝑦,𝑆𝑆𝑇 was on the 426 

high-end of the atmospheric model-based range of values, and somewhat worse than for 427 

the DLR-based linear models. Finally, the Pearson correlation coefficient between models 428 

and observations (Fig. 4d) was similar amongst all linear-based models and well within 429 

the range of values estimated from the atmospheric model-based products. The latter 430 

result was expected since all linear models were forced by the same SST time-series.  431 

Overall, these results suggested that ∆𝑃2𝑦,𝑃𝑟 (after bias correction) reproduced the 432 

observations with similar accuracy to atmospheric model-based products, including 433 

similar RMSEbc, variability amplitude and phase of the signal. ∆𝑃2𝑦,𝐷𝑂 displayed similar 434 

performance for RMSEbc and for the phase, but not for the variability amplitude. Finally, 435 

∆𝑃2𝑦,𝑆𝑆𝑇 had the worst performance concerning RMSEbc, but also in capturing the 436 

variability amplitude, while it displayed similar ability to the other linear models in 437 

reproducing the phase. The overall weakest performance of ∆𝑃2𝑦,𝑆𝑆𝑇 was coherent with 438 

the less robust correlations underlying this model. Additionally, the results indicate that 439 

the non-linear transformations on SST employed in the Prata and the Dilley-O’Brien 440 

algorithms improved the linear models.  441 

4.2. Stochastic reproducing of P monthly PDFs 442 

At sub-yearly time-scales, the magnitude of 𝜌𝑃,𝑊, 𝜌𝑃,𝑆𝑆𝑇 and 𝜌𝑃,𝐷𝐿𝑅 decreased abruptly 443 

to negligible values (Section 3). Thus, at these time-scales, the C-C relationship is no 444 

longer the dominant control of W (nor P) variability, and the longwave radiative fluxes 445 

are no longer the main constraints for P. Additionally, the cloud-effects on P variability 446 

become non-negligible (Fig. 3). Consequently, the linear relationships underlying the 447 

above P reconstruction at 2-year resolution are no longer appropriate at sub-yearly time-448 

scales. Building on the strong scale-invariant symmetries present in the variability of 449 

global and regional rainfall across wide ranges of time-scales (e.g. Lovejoy and Schertzer, 450 

2013; Nogueira et al., 2013; Nogueira and Barros, 2014, 2015; Nogueira, 2017, 2018), an 451 

algorithm was proposed here to derive the sub-yearly statistics from the multi-year 452 

information alone. The physical basis for this algorithm is that while the atmosphere is 453 

governed by continuum mechanics and thermodynamics, it simultaneously obeys 454 

statistical turbulence cascade laws (e.g., Lovejoy & Schertzer, 2013; Lovejoy et al., 455 

2018). 456 

Conveniently, precipitation (and many other atmospheric variables) is characterized by 457 

low spectral slopes 𝛽 < 1, with quasi-Gaussian and quasi-non-intermittent statistics, at 458 
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time-scales between ~10 days and a few decades (Lovejoy & Schertzer, 2013; de Lima 459 

& Lovejoy, 2015; Lovejoy et al., 2015, 2018; Nogueira, 2017b, 2018). Grounded by these 460 

scale-invariant properties, fractional Gaussian noise was used here to generate multiple 461 

realizations of downscaled ∆𝑃 at monthly resolution from each member of each ∆𝑃2𝑦 462 

time-series: 463 

∆𝑃1𝑚(𝑡) = 𝑓𝐺𝑛1𝑚(𝑡)
∆𝑃2𝑦(𝑡)

𝑓𝐺𝑛2𝑦(𝑡)
       (11) 464 

where 𝑓𝐺𝑛1𝑚 is a fractional Gaussian noise, which was computed by first generating a 465 

random Gaussian noise (𝑔), then taking its Fourier transform (𝑔̃), multiplying by 𝑘−𝛽/2, 466 

and finally taking the inverse transform to obtain 𝑓𝐺𝑛1𝑚. The mean of 𝑓𝐺𝑛1𝑚 was forced 467 

to be equal to the number of data-points of ∆𝑃2𝑦. Then 𝑓𝐺𝑛2𝑦 was obtained by coarse-468 

graining 𝑓𝐺𝑛1𝑚using 24-point (i.e. 2 years) length boxes. In this way, ∆𝑃1𝑚,𝐷𝑂, ∆𝑃1𝑚,𝑃𝑟, 469 

∆𝑃1𝑚,𝑆𝑆𝑇 ensembles are generated respectively from the bias-corrected ∆𝑃2𝑦,𝐷𝑂, ∆𝑃2𝑦,𝑃𝑟 470 

and ∆𝑃2𝑦,𝑆𝑆𝑇 time-series. One hundred plausible realizations are generated for each 471 

ensemble, corresponding to one hundred different realizations of 𝑓𝐺𝑛1𝑚. Based on recent 472 

investigations on P scale-invariance properties, a spectral exponent 𝛽 ≈ 0.3 is assumed 473 

(de Lima & Lovejoy, 2015; Nogueira, 2018). In Equation (11), the 2-year resolution time-474 

series were assumed to have a constant value for every month inside each 2-years period.  475 

Notice that a resolution limit should exist to the proposed stochastic downscaling 476 

algorithm, namely at time-scales below ~10 days where a fundamental transition occurs 477 

in the scaling behavior of most atmospheric fields (including P, see e.g. Lovejoy & 478 

Schertzer, 2013; Lovejoy, 2015; de Lima & Lovejoy, 2015; Nogueira, 2017a,b, 2018). At 479 

faster time-scales intermittency becomes non-negligible and the quasi-Gaussian 480 

approximation to the statistics is no longer robust.  481 

The proposed downscaling methodology corresponds to treating the sub-yearly 482 

frequencies as random ‘weather noise’, which is characterized, to a good approximation, 483 

by scale-invariant behavior with quasi-Gaussian statistics (Vallis, 2009; Lovejoy et al., 484 

2015). A similar downscaling methodology has been previously demonstrated to 485 

reproduce the spatial sub-grid scale variability of topographic height (Bindlish & Barros, 486 

1996), rainfall (Bindlish & Barros, 2000; Rebora et al., 2006; Nogueira & Barros, 2015) 487 

and clouds (Nogueira & Barros, 2014).  488 

Figure 5a showed that the PDFs computed from ∆𝑃1𝑚,𝐷𝑂, ∆𝑃1𝑚,𝑃𝑟 and ∆𝑃1𝑚,𝑆𝑆𝑇 were in 489 

remarkable agreement with GPCP PDFs for the 1979-2010 period, representing a 490 

significant improvement compared to all atmospheric model-based products. This 491 
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improved PDF accuracy was quantified using the Perkins skill score, S-Score (Perkins et 492 

al., 2007), defined as: 493 

S-Score=100 × ∑ 𝑚𝑖𝑛[𝑓𝑚𝑜𝑑(𝑖), 𝑓𝑜𝑏𝑠(𝑖)]𝑀
𝑖=1       (12) 494 

where 𝑓𝑚𝑜𝑑(𝑖) and 𝑓𝑜𝑏𝑠(𝑖) are respectively the frequency of the modeled and observed P 495 

anomaly values in bin i, M is the number of bins used to compute the PDF (here M=15), 496 

and min[x,y] is the minimum between the two values. The S-Score is a measure of 497 

similarity between modeled and observed PDFs, such that if a model reproduces the 498 

observed PDF perfectly then S-Score=100%.  499 

The linear-based models showed S-Score values around 95%, which were significantly 500 

higher than then ~80% found for the atmospheric model-based products (Fig. 6). 501 

Furthermore, the stochastic model captured the change in the PDFs between two separate 502 

periods (1979-1990 and 1999-2010, Fig. 5b), while preserving the remarkably high 503 

(≥90%) S-Scores (Fig. 6, blue and red markers). Indeed, the S-Scores for linear-based 504 

were consistently better than the S-Scores obtained from atmospheric model-based 505 

products (~80%). Despite some differences between PDFs obtained from ∆𝑃1𝑚,𝐷𝑂, 506 

∆𝑃1𝑚,𝑃𝑟 and ∆𝑃1𝑚,𝑆𝑆𝑇, their similar performance in reproducing observations was 507 

somewhat unexpected, given the distinct performances in reproducing the observed time-508 

series at multi-year resolutions. While the error analysis here was based on a limited 509 

sample (mainly due to short duration of the satellite-period), these results suggested that 510 

the proposed stochastic downscaling mechanism is quite robust in reproducing the 511 

monthly P statistics, with only moderate sensitivity to the coarse resolution forcing. 512 

 513 

5. Conclusions 514 

Atmospheric variables display significant variability over a wide range of temporal 515 

scales, both due changes in external forcings (including surface fluxes, changes to 516 

greenhouse gases and aerosol concentrations, solar forcing, and volcanic eruptions), but 517 

also due to intrinsic modes of atmospheric variability. Additionally, external and internal 518 

atmospheric processes interact nonlinearly amongst themselves, resulting in an intricate 519 

multi-scale structure, which is still ill understood and responsible for significant 520 

uncertainties in climate models. Here a multi-scale analysis framework was employed, 521 

aiming to disentangle the complex structure of global-averaged precipitation variability.  522 

A critical transition emerges from DCCA at time-scales ~1-year, revealing a change in 523 

the control mechanisms of the P and W, but also in the strength of the atmosphere-ocean 524 
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coupling. At multi-year time-scales W becomes tightly correlated to T2m and to SST 525 

(~0.9), while at sub-yearly time-scales this correlation decreases abruptly towards 526 

negligible values (~0.2). A sensitivity coefficient for W close to the typically estimated 527 

0.07%/K was found for multi-year time-scales. In other words, the C-C relationship is the 528 

dominant mechanism of W at multi-year time-scale, but not at sub-year time-scales. 529 

Furthermore, at time-scales >1-2 years SST becomes tightly correlated to Tland, pointing 530 

to a fundamental behavioral transition, where the atmosphere and the oceans start to act 531 

as a single coupled system at multi-year time-scales, as previously suggested by Lovejoy 532 

et al. (2018). 533 

A similar transition was also found for 𝜌𝑃,𝑇2𝑚
 and 𝜌𝑃,𝑆𝑆𝑇, with negligible correlations and 534 

sub-year time-scales, which tend increase at multi-year time-scales, although the latter 535 

displayed significant spread amongst different datasets (ranging between ~0.4 to ~0.7).  536 

More robust correlations were obtained for the P response to the energetic constraints 537 

imposed by a simple atmospheric energy balance. DCCA showed that P variability is 538 

tightly (negatively) coupled to the net atmospheric radiative balance at multi-year time-539 

scales (with 𝜌𝑃,𝑅𝑎𝑡𝑚
≲ −0.8). The transition between multi-year and sub-yearly time-540 

scales also emerged for 𝜌𝑃,𝑅𝑎𝑡𝑚
, with the correlation magnitude decreased rapidly at sub-541 

yearly time-scales, changing signal, and reached values ~0.4 at sub-monthly time-scales. 542 

Additionally, DCCA revealed that the positive sub-monthly correlations are dominated 543 

by the TOA OLR, while the multi-year correlations were dominated by surface longwave 544 

fluxes, particularly by DLR. Furthermore, DCCA suggested that cloud effects play a 545 

negligible on the multi-year correlations, but they are important for the sub-monthly 546 

𝜌𝑃,𝑅𝑎𝑡𝑚
 values. Notice that the sensitivity coefficients of P to SST estimated here were in 547 

the 2-4%/K range, close to the typical 1-3%/K values (for P against TS) obtained from 548 

energetic constraints on global rainfall.  549 

The robustness and relevance of this emergent multi-scale correlation structure is 550 

demonstrated by proposing simple models for reconstruction of P at multi-year time-551 

scales. Anomaly time-series for P at 2-year resolution were derived from SST 552 

observations alone, either directly based on 𝜌𝑃,𝑆𝑆𝑇, or by combining 𝜌𝑅,𝐷𝐿𝑅𝐶𝑆
, empirical 553 

algorithms for clear-sky DLR estimation, and the C-C relationship. After correcting for 554 

their systematic mean bias, the highly-idealized model for ∆𝑃2𝑦 based on clear-sky DLR 555 

estimated from the Prata algorithm displayed similar accuracy in reproducing 556 

observations as atmospheric model-based products, as measured by RMSEbc, Pearson 557 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-70
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 28 September 2018
c© Author(s) 2018. CC BY 4.0 License.



18 
 

correlation coefficient and normalized standard deviation. The simple model based on the 558 

Dilley-O’Brien algorithm for clear-sky DLR estimation showed a somewhat poorer 559 

performance, particularly in reproducing the observed variability amplitude. Finally, the 560 

model based on P-SST correlation showed the weakest performance, which agrees with 561 

the less robust correlations underlying this idealized model. 562 

The proposed linear models cannot be extended to sub-yearly the time-scales because all 563 

the correlations upon which they rely become negligible. This abrupt transition in the 564 

multi-scale correlation structure implies that at sub-yearly time-scales the tight linear 565 

coupling between atmospheric and ocean temperature, the Clausius-Clapeyron 566 

relationship, and the atmospheric energy balance are no longer dominant linear 567 

constraints for P. Nonetheless, the multi-scale analysis framework provides another path 568 

for reconstruction of the P statistics at sub-yearly resolution. A stochastic downscaling 569 

algorithm based on scale-invariant symmetries of P was applied to ∆𝑃2𝑦 reconstructed 570 

time-series, resulting in monthly P PDFs. Remarkably, the reconstructed PDFs of P at 571 

monthly resolution showed better accuracy in reproducing GPCP statistics than 572 

atmospheric model-based products, as measured by S-Score computed over decadal and 573 

30-year periods. Interestingly, the PDFs obtained by downscaling the three algorithms 574 

proposed for multi-year P reconstruction showed similar performance, suggesting a weak 575 

sensitivity of this algorithm to the accuracy of the 2-year resolution forcing time-series. 576 

The present investigation highlights the complex multi-scale structure of the water cycle 577 

variability and its governing mechanisms. Finally, it is hypothesized that the path for 578 

stochastic regional precipitation simulation may be opened by leveraging on the widely 579 

reported scale-invariant properties of precipitation in the spatial domain (e.g. Lovejoy a& 580 

Schertzer, 2013; Nogueira & Barros, 2014, 2015), and exploring control mechanisms for 581 

slow variability of regional precipitation, such as the El-Niño Southern Oscillation and 582 

its teleconnections. 583 

 584 
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Table 1 Linear regression coefficient 𝛼𝑊,𝑆𝑆𝑇 estimated from ΔW/Wc against ΔSST at 2-736 

year resolution, assuming a relationship as given by Equation (1). The respective 737 

coefficient of determination is also provided. The 𝛼𝑊,𝑆𝑆𝑇 are computed for ERA-20C, 738 

20CR, and for the ensemble of ERA-20CM simulations. Additionally, the coefficient is 739 

estimated by pooling together ERA-20C, ERA-20CM (ensemble) and 20CR datasets. 740 

Dataset 𝛼𝑊,𝑆𝑆𝑇 [𝐾−1] 𝑅2 

ERA-20C 0.09 0.97 

20CR 0.10 0.92 

E20CM (Ensemble) 0.07 0.92 

All Datasets 0.08 0.91 

 741 

 742 

Table 2. Linear regression coefficient 𝛼𝑃,𝐷𝐿𝑅 estimated from ΔP/Pc against ΔDLR at 2-743 

year resolution, assuming a relationship as given by Equation (11). The respective 744 

coefficients of determination are also provided. The 𝛼𝑃,𝐷𝐿𝑅 values are computed for ERA-745 

20C, 20CR, and for the ensemble of ERA-20CM simulations. Additionally, the 746 

coefficient is estimated by pooling together all datasets, including GPCP observations 747 

against DLR from CERES-EBAF. 748 

Dataset 𝛼𝑃,𝐷𝐿𝑅 [(𝑊𝑚−2)−1] 𝑅2 

ERA-20C 0.005 0.88 

20CR 0.003  0.51 

E20CM (Ensemble) 0.004 0.81 

All datasets (includes observations) 0.004 0.70 

 749 

 750 

Table 3. Linear regression coefficient 𝛼𝑃,𝑆𝑆𝑇 estimated from ΔP/Pc against ΔSST at 2-751 

year resolution. The respective coefficients of determination are also provided. The 𝛼𝑃,𝑆𝑆𝑇 752 

values are computed for ERA-20C, 20CR, for the ensemble of ERA-20CM simulations, 753 

and for GPCP against ERA-20CM control SST forcing. Additionally, the coefficient is 754 

estimated by pooling together all datasets. 755 

Dataset 𝛼𝑃,𝑆𝑆𝑇 [𝐾−1] 𝑅2 

ERA-20C 0.04 0.89 

20CR 0.02 0.35 

E20CM (Ensemble) 0.02 0.73 

GPCP 0.04 0.42 

All datasets (includes observations) 0.02 0.53 
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 756 

Figure 1. DCCA cross-correlation coefficients against temporal scale computed for 757 

global-mean time-series of a) 𝑊 vs 𝑇2𝑚 (solid) and 𝑊 vs 𝑆𝑆𝑇 (dashed); b) 𝑆𝑆𝑇 vs 𝑇𝑙𝑎𝑛𝑑; 758 

and c) 𝐿𝑣𝑃 vs 𝑇2𝑚 (solid) and 𝐿𝑣𝑃 vs 𝑆𝑆𝑇 (dashed). Red lines represent results from 759 

ERA-20C, blue lines are from ERA-20CM, pink lines are from 20CR and black lines are 760 

estimated from observational products. Notice that 𝑅𝑎𝑡𝑚 is not available from 20CR 761 

dataset, and that observational-based estimates of 𝜌𝑃,𝑇𝑆
 (and 𝜌𝑃,𝑆𝑆𝑇) are only computed 762 

up to 4-year time-scales due to the limited duration of GPCP dataset.  763 

 764 

 765 

 766 
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 767 

Figure 2. DCCA cross-correlation coefficients against temporal scale computed for a) 768 

𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs (𝑅𝑎𝑡𝑚 + 𝐹𝑆𝐻) (dashed) and 𝐿𝑣𝑃 vs 𝐹𝑆𝐻 (dot-dashed); b) 𝐿𝑣𝑃 769 

vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑛𝑒𝑡 (dashed), and 𝐿𝑣𝑃 vs 𝑅𝑆𝑊,𝑛𝑒𝑡 (dot-dashed); c) 𝐿𝑣𝑃 vs 770 

𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶  (dashed), and 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑇𝑂𝐴 (dot-dashed); and d) 𝐿𝑣𝑃 vs 771 

𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝐷𝐿𝑅 (dashed), and 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃 (dot-dashed). Red lines are 772 

computed from ERA-20C, blue lines are from ERA-20CM, pink lines are from 20CR and 773 

black lines are computed from GPCP and CERES-EBAF observational products. Notice 774 

that 𝑅𝑎𝑡𝑚 and 𝑅𝑆𝑊,𝑛𝑒𝑡 are not available from 20CR, and that correlation coefficients 775 

estimated from observational products are only computed up to 4-year time-scales due to 776 

the limited duration of GPCP dataset.   777 
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 778 

Figure 3. DCCA cross-correlation coefficients against temporal scale computed for a) 779 

𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid) and 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚,𝐶𝑆 (dashed); b) 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶  (solid) and 𝐿𝑣𝑃 vs 780 

𝑅𝐿𝑊,𝑆𝐹𝐶,𝐶𝑆 (dashed). Red lines are computed from ERA-20C and blue lines are from 781 

ERA-20CM. 782 
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 784 

 785 

Figure 4. Error estimates from simulated anomaly time-series for P at 2-year resolution 786 

against GPCP, computed for the 1979-2010 period, including a) mean bias (Bias); b) root-787 

mean-square error after bias correction (RMSEbc); c) model standard deviation 788 

normalized by observed standard deviation (𝜎𝑛); and d) Pearson correlation coefficient 789 

(r). For ERA-20CM dataset the range for all ensemble members is shown, while ‘x’ marks 790 

their mean value. The p-value for all correlations shown in panel (d) are <0.05. 791 
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 793 

Figure 5. PDFs estimated from monthly anomaly time-series for P from ERA-20C (red), 794 

ERA-20CM (dark blue), 20CR (pink), GPCP (black), ∆𝑃1𝑚,𝐷𝑂 (dark green), ∆𝑃1𝑚,𝑃𝑟 795 

(light green), and ∆𝑃1𝑚,𝑆𝑆𝑇 (light blue). In panel a) the PDFs are estimated for the 1979-796 

2010 period, and in panel b) the PDFs are estimated for the 1979-1990 period (solid) and 797 

the 1999-2010 period (dashed). 798 

 799 
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 801 

Figure 6. S-Score computed from the different P simulations against GPCP. The values 802 

estimated for the full satellite period (1979-2010) are presented in black, for the 1979-803 

1990 period are presented in red, and for 1990-2010 period are presented in blue. For 804 

ERA-20CM dataset, the S-Score is estimated from the 10-member ensemble PDF. 805 
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